- Документы

Удельный расход тепловой энергии на 1 квадратный метр площади

Здравствуйте, в этой статье мы постараемся ответить на вопрос: «Удельный расход тепловой энергии на 1 квадратный метр площади». Если у Вас нет времени на чтение или статья не полностью решает Вашу проблему, можете получить онлайн консультацию квалифицированного юриста в форме ниже.

Начиная с конца 2020 года все государственные и муницыпальные учреждения обязаны осуществить разработку или корректировку ранее разработанных программ энергосбережения в соответствии с Приказом Минэкономразвития № 425.

Что такое целевой показатель

Целевой показатель в энергосбережении это показатель, характеризующий деятельность юридических лиц по реализации мер, направленных на эффективное использование и экономное расходование топливно- энергетических ресурсов на всех стадиях их производства и потребления.

А теперь определение целевой показатель простым языком: Целевой показатель это цель, которую организация должна достичь после реализации мероприятий программы энерrосбережения.

Примеры целевых показателей:

  • Потребление воды на одного ученика.
  • Потребление электроэнергии на единицу продукции.
  • Потребление тепла на квадратный метр площади.

Методика расчета целевых показателей для регулируемых организаций

Методика расчета целевых показателей для регулируемых организаций базируется на Приказе Минэнерго №399 и на Приказах региональных комиссий по тарифам.

Следует учитывать, что региональные комиссии по тарифам могут устанавливать собственные целевые показатели программы энергосбережения для того или иного региона.

Как правило, региональные комиссии по тарифам издают свои собственны приказы или распоряжения, каким образом должна быть разработана и рассчитана программа энергосбережения.

В этом случае регулируемая организация должна руководствоваться приказом и методикой расчета целевых показателей региональной комиссии по тарифам.

Вот несколько примеров, какие целевые показатели могут быть установленны для регулируемых организаций:

  • Увеличение доли отпуска тепловой энергии потребителям по приборам учета %
  • Снижение потерь тепловой энергии в тепловых сетях %
  • Снижение удельного расхода электрической энергии на холодное водоснабжение кВт.ч/куб. м

Ниже представлен полный перечень целевых показателей для регулируемых организаций по разным видам деятельности.

А вот пример расчета целевых показателей программы энергосбережения для регулируемой организации:

Целевые и прочие показатели

Ед. изм.

(базовый год)

Плановые значения целевых показателей по годам

2020 г.

2021 г.

2022 г.

2023 г.

2024 г.

2025 г.

Экономия электрической энергии

тыс. кВт.ч

2

2

2

2

2

Сокращение объемов электрической энергии, используемой на накопление, обработку, утилизацию, обезвреживание, захоронение твердых коммунальных отходов, по отношению к фактическому объему утилизированных отходов (кВт.ч/куб.м.);

кВт.ч/куб.м.

Оснащенность приборами учета энергоресурсов в зданиях, строениях, сооружениях, находящихся в собственности регулируемой организации

%

100

100

100

100

100

100

электрической энергии

%

100

100

100

100

100

100

Сокращение удельного расхода горюче-смазочных материалов, используемых для оказания услуг по накоплению, обработке, утилизации, обезвреживанию, захоронению твердых коммунальных отходов, по отношению к фактическому объему утилизированных отходов (%);

%

Дизельного топлива

%

Снижение аварийности технологического оборудования систем

%

0.01

0.01

0.01

0.01

0.01

0.01

Точное значение потерь тепла произвольным зданием вычислить практически невозможно. Однако давно разработаны методики приблизительных расчетов, дающих в пределах статистики достаточно точные средние результаты. Эти схемы вычислений часто упоминается как расчеты по укрупненным показателям (измерителям).

Наряду с тепловой мощностью часто возникает необходимость рассчитать суточный, часовой, годичный расход тепловой энергии или среднюю потребляемую мощность. Как это сделать? Приведем несколько примеров.

Часовой расход тепла на отопление по укрупненным измерителям вычисляется по формуле Qот=q*a*k*(tвн-tно)*V, где:

  • Qот — искомое значение к килокалориях.
  • q — удельная отопительная величина дома в ккал/(м3*С*час). Она ищется в справочниках для каждого типа зданий.

Как проводить расчеты потребляемой тепловой энергии

Если тепловой счетчик по тем или иным причинам отсутствует, то для расчета тепловой энергии необходимо использовать следующую формулу:

Рассмотрим, что значат эти условные обозначения.

1. V обозначает количество потребляемой горячей воды, которое может исчисляться либо кубическими метрами, либо же тоннами.

2. Т1 – это температурный показатель самой горячей воды (традиционно измеряется в привычных градусах по Цельсию). В данном случае предпочтительнее использовать именно ту температуру, которая наблюдается при определенном рабочем давлении. К слову, у показателя даже имеется специальное название – это энтальпия. А вот если нужный датчик отсутствует, то в качестве основы можно взять тот температурный режим, который предельно близок к этой энтальпии. В большинстве случаев усредненный показатель составляет примерно 60-65 градусов.

3. Т2 в приведенной выше формуле также обозначает температуру, но уже холодной воды. По причине того, что проникнуть в магистраль с холодной водой – дело достаточно трудное, в качестве этого значения применяются постоянные величины, способные изменяться в зависимости от климатических условий на улице. Так, зимой, когда сезон отопления в самом разгаре, данный показатель составляет 5 градусов, а в летнее время, при отключенном отоплении, 15 градусов.

4. Что же касается 1000, то это стандартный коэффициент, используемый в формуле для того, чтобы получить результат уже в гигакалориях. Получится точнее, чем если бы использовались калори.

Читайте также:  Как правильно заполнить декларацию 3 НДФЛ за 2023 год

5. Наконец, Q – это общее количество тепловой энергии.

Как видим, ничего сложного здесь нет, поэтому движемся дальше. Если отопительный контур закрытого типа (а это более удобно с эксплуатационной точки зрения), то расчеты необходимо производить несколько по-другому. Формула, которую следует использовать для здания с закрытой отопительной системой, должна выглядеть уже следующим образом:

Теперь, соответственно, к расшифровке.

1. V1 обозначает расход рабочей жидкости в трубопроводе подачи (в качестве источника тепловой энергии, что характерно, может выступать не только вода, но и пар).

2. V2 – это расход рабочей жидкости в трубопроводе «обратки».

3. Т – это показатель температуры холодной жидкости.

4. Т1 – температура воды в подающем трубопроводе.

5. Т2 – температурный показатель, который наблюдается на выходе.

6. И, наконец, Q – это все то же количество тепловой энергии.

Также стоит отметить, что расчет Гкал на отопление в данном случае от нескольких обозначений:

  • тепловая энергия, которая поступила в систему (измеряется калориями);
  • температурный показатель во время отвода рабочей жидкости по трубопроводу «обратки».

Определение нормируемого значения удельного расхода тепловой энергии на отопление здания

⇐ ПредыдущаяСтр 3 из 3

Нормируемое значение удельного расхода тепловой энергии на отопление жилого или общественного здания определяют по табл. 5.1 и 5.2.

Нормируемый удельный расход тепловой энергии на отопление жилых домов одноквартирных отдельно стоящих и блокированных, кДж/(м2·°С·сут)

Таблица 5.1

Отапливаемая площадь домов, м2 С числом этажей
60 и менее
1000 и более
Примечание — При промежуточных значениях отапливаемой площади дома в интервале 60—1000 м2 значения должны определяться по линейной интерполяции.

20. Согласно СП 50.133 30.2012 пункт 5.1 б) удельная теплозащитная характеристика здания должна быть не больше нормируемого значения (комплексное требование).
Удельная теплозащитная характеристика здания Коб, Вт/(м3 °С), рассчитывается по формуле (Ж.1) СП 50.13330.2012:
Коб = 1 / Vотi(nt,i * Aф,i / Rопр,i) = КкомпКобщ,
где Vот — отапливаемый объём общественной части здания, м3

Наименование фрагмента nt,i Aф,i Rопр,i,
2 °С)/Вт
nt,i * Aф,i / Rопр,i
Вт/°С
%

Что влияет на годовой расход тепла на отопление?

  • Продолжительность отопительного сезона (при какой температуре внешней среды отключают отопление). Она, в свою очередь, определяется датами, когда среднесуточная температура на улице за последнюю пятидневку опустится ниже (и поднимется выше) 8 градусов по шкале Цельсия.

Полезно: на практике при планировании запуска и остановки отопления учитывается прогноз погоды. Длительные оттепели бывают и зимой, а заморозки могут ударить уже в сентябре.

  • Средние температуры зимних месяцев. Обычно при проектировании отопительной системы в качестве ориентира берется среднемесячная температура самого холодного месяца — января. Понятно, что чем холоднее на улице — тем больше тепла здание теряет через ограждающие конструкции.

Гидравлический расчет

Итак, с теплопотерями определились, мощность отопительного агрегата подобрана, остается лишь определиться с объемом необходимого теплоносителя, а, соответственно, и с размерами, а также материалами используемых труб, радиаторов и запорной арматуры.

В первую очередь определяем объем воды внутри отопительной системы. Для этого потребуются три показателя:

  1. Общая мощность отопительной системы.
  2. Разница температур на выходе и входе в отопительный котел.
  3. Теплоемкость воды. Этот показатель стандартный и равен 4,19 кДж.

Гидравлический расчет системы отопления

Формула такова — первый показатель делим на два последних. Кстати, этот тип расчета может быть использован для любого участка системы отопления

Здесь важно разбить магистраль на части, чтобы в каждой скорость движения теплоносителя была одинаковой. Поэтому специалисты рекомендуют делать разбивку от одной запорной арматуры до другой, от одного радиатора отопления к другому

Теперь переходим к расчету потерь напора теплоносителя, которые зависят от трения внутри трубной системы. Для этого используются всего две величины, которые в формуле перемножаются между собой. Это длина магистрального участка и удельные потери трения.

А вот потери напора в запорной арматуре рассчитываются совершенно по другой формуле. В ней учитываются такие показатели, как:

  • Плотность теплоносителя.
  • Его скорость в системе.
  • Суммарный показатель всех коэффициентов, которые присутствуют в данном элементе.

Чтобы все три показателя, которые выведены формулами, подходили к стандартным величинам, необходимо правильно подобрать диаметры труб. Для сравнения приведем пример нескольких видов труб, чтобы было понятно, как их диаметр влияет на тепловую отдачу.

  1. Металлопластиковая труба диаметром 16 мм. Ее тепловая мощность варьируется в диапазоне 2,8-4,5 кВт. Разность показателя зависит от температуры теплоносителя. Но учитывайте, что это диапазон, где установлены минимальный и максимальный показатель.
  2. Та же труба с диаметром 32 мм. В этом случае мощность варьируется в пределах 13-21 кВт.
  3. Труба из полипропилена. Диаметр 20 мм — диапазон мощности 4-7 кВт.
  4. Та же труба диаметром 32 мм — 10-18 кВт.

И последнее — это определение циркуляционного насоса. Чтобы теплоноситель равномерно распределялся по всей отопительной системе, необходимо, чтобы его скорость была не меньше 0,25 м/сек и не больше 1,5 м/сек. При этом давление не должно быть выше 20 МПа. Если скорость теплоносителя будет выше максимально предложенной величины, то трубная система будет работать с шумом. Если скорость будет меньше, то может произойти завоздушивание контура.

Нормативы расхода тепловой энергии

Читайте также:  Как снять арест с недвижимости?

Тепловые нагрузки рассчитываются с учетом мощности отопительного агрегата и тепловых потерь здания. Поэтому, чтобы определить мощность проектируемого котла, необходимо теплопотери здания умножить на повышающий коэффициент 1,2. Это своеобразный запас, равный 20%.

Для чего необходим такой коэффициент? С его помощью можно:

  • Прогнозировать падение давления газа в магистрали. Ведь зимой потребителей прибавляется, и каждый старается взять топлива больше, чем остальные.
  • Варьировать температурный режим внутри помещений дома.

Добавим, что тепловые потери не могут распределяться по всей конструкции здания равномерно. Разность показателей может быть достаточно большой. Вот некоторые примеры:

  • Через наружные стены покидает здание до 40% тепла.
  • Через полы — до 10%.
  • То же самое относится и к крыше.
  • Через вентиляционную систему — до 20%.
  • Через двери и окна — 10%.

Итак, с конструкцией здания разобрались и сделали одно очень важное заключение, что от архитектуры самого дома и места его расположения зависят потери тепла, которые необходимо компенсировать. Но многое также определяется и материалами стен, крыши и пола, а также наличием или отсутствием теплоизоляции

Это немаловажный фактор.

К примеру, определим коэффициенты, снижающие теплопотери, зависящие от оконных конструкций:

  • Обычные деревянные окна с обычными стеклами. Для расчета тепловой энергии в данном случае используется коэффициент, равный 1,27. То есть через такой вид остекления происходит утечка тепловой энергии, равной 27% от общего показателя.
  • Если установлены пластиковые окна с двухкамерными стеклопакетами, то используется коэффициент 1,0.
  • Если установлены пластиковые окна из шестикамернного профиля и с трехкамерным стеклопакетом, то берется коэффициент 0,85.

Идем дальше, разбираясь с окнами. Существует определенная связь площади помещения и площади оконного остекления. Чем больше вторая позиция, тем выше тепловые потери здания. И здесь есть определенное соотношение:

  • Если площадь окон по отношению к площади пола имеет всего лишь 10%-ный показатель, то для расчета тепловой мощности системы отопления используется коэффициент 0,8.
  • Если соотношение располагается в диапазоне 10-19%, то применяется коэффициент 0,9.
  • При 20% — 1,0.
  • При 30% —2.
  • При 40% — 1,4.
  • При 50% — 1,5.

Расчет тепловой мощности исходя из объема помещения

Этот метод определения тепловой нагрузки на системы отопления наименее универсален, чем первый, так как предназначен для расчетов помещений с высокими потолками, но при этом не учитывает, что воздух под потолком всегда теплее, чем в нижней части комнаты и, следовательно, количество потерь тепла будет различаться зонально.

Тепловая мощность системы отопления для здания или помещения с потолками выше стандартных рассчитывается исходя из следующего условия:

Q=V*41 Вт (34 Вт), где V – наружный объем помещения в м?, А 41 Вт – удельное количество тепла, необходимое для обогрева одного кубометра здания стандартной постройки (в панельном доме). Если строительство ведется с применением современных строительных материалов, то удельный показатель теплопотерь принято включать в расчеты со значением 34 Ватт.

При использовании первого или второго метода расчета теплопотерь здания укрупненным методом можно пользоваться поправочными коэффициентами, которые в некоторой степени отражают реальность и зависимость потерь тепла зданием в зависимости от различных факторов.

  1. Тип остекления:
  • тройной пакет 0,85,
  • двойной 1,0,
  • двойной переплет 1,27.
  1. Наличие окон и входных дверей увеличивает величину потерь тепла дома на 100 и 200 Ватт соответственно.
  2. Теплоизоляционные характеристики наружных стен и их воздухопроницаемость:
  • современные теплоизоляционные материалы 0,85
  • стандарт (два кирпича и утеплитель) 1,0,
  • низкие теплоизоляционные свойства или незначительная толщина стен 1,27-1,35.
  1. Процентное отношение площади окон к площади помещения: 10%-0,8, 20%—0,9, 30%—1,0, 40%—1,1, 50%—1,2.
  2. Расчет для индивидуального жилого дома должен производиться с поправочным коэффициентом порядка 1,5 в зависимости от типа и характеристик используемых конструкций пола и кровли.
  3. Расчетная температура наружного воздуха в зимний период (для каждого региона своя, определяется нормативами): -10 градусов 0,7, -15 градусов 0,9, -20 градусов 1,10, -25 градусов 1,30, -35 градусов 1,5.
  4. Тепловые потери так же растут в зависимости от увеличения количества наружных стен по следующей зависимости: одна стена – плюс 10% от тепловой мощности.

Но, тем не менее, определить какой метод даст точный и действительно верный результат тепловой мощности отопительного оборудования можно лишь после выполнения точного и полного теплотехнического расчета здания.

Кому необходимо пересмотр расчет или перерасчет тепловой нагрузки и потребления тепловой энергии

— организациям, получившим уведомление о необходимости уточнения (расчета или перерасчета) тепловых нагрузок нежилых помещений здания от ОАО «МОЭК», в виде предписаний, актов готовности к ОЗП (организаций, отключенных от сетей теплоснабжения жилого многоквартирного дома);

— организациям, оплачивающим услуги расчетным методом (не имеющим возможности установить прибор учета), в том числе при необоснованном увеличении величин потребления со стороны энергоснабжающей/управляющей компании;

— организациям, установившим дополнительное тепло потребляющее оборудование (калорифер системы приточной вентиляции, тепловую завесу и т.д.) для доказательства соответствие новой тепловой нагрузки и нового потребления тепловой энергии расчетному (лимиту) установленному Энергоснабжающей организацией.

Как проводить расчеты потребляемой тепловой энергии?

Если тепловой счетчик по тем или иным причинам отсутствует, то для расчета тепловой энергии необходимо использовать следующую формулу:

Рассмотрим, что значат эти условные обозначения.

1. V обозначает количество потребляемой горячей воды, которое может исчисляться либо кубическими метрами, либо же тоннами.

2. Т1 – это температурный показатель самой горячей воды (традиционно измеряется в привычных градусах по Цельсию). В данном случае предпочтительнее использовать именно ту температуру, которая наблюдается при определенном рабочем давлении. К слову, у показателя даже имеется специальное название – это энтальпия. А вот если нужный датчик отсутствует, то в качестве основы можно взять тот температурный режим, который предельно близок к этой энтальпии. В большинстве случаев усредненный показатель составляет примерно 60-65 градусов.

Читайте также:  Уплатить или принять оплату налога за третье лицо

3. Т2 в приведенной выше формуле также обозначает температуру, но уже холодной воды. По причине того, что проникнуть в магистраль с холодной водой – дело достаточно трудное, в качестве этого значения применяются постоянные величины, способные изменяться в зависимости от климатических условий на улице. Так, зимой, когда сезон отопления в самом разгаре, данный показатель составляет 5 градусов, а в летнее время, при отключенном отоплении, 15 градусов.

4. Что же касается 1000, то это стандартный коэффициент, используемый в формуле для того, чтобы получить результат уже в гигакалориях. Получится точнее, чем если бы использовались калори.

5. Наконец, Q – это общее количество тепловой энергии.

Целевые показатели для Субъектов РФ

  • Энергоемкость валового регионального продукта субъекта Российской Федерации
  • Отношение расходов на приобретение энергетических ресурсов к объему валового регионального продукта
  • Доля объема электрической энергии, расчеты за которую осуществляются с использованием приборов учета
  • Доля объема тепловой энергии, расчеты за которую осуществляются с использованием приборов учета
  • Доля объема холодной воды, расчеты за которую осуществляются с использованием приборов учета
  • Доля объема горячей воды, расчеты за которую осуществляются с использованием приборов учета
  • Доля объема природного газа, расчеты за который осуществляются с использованием приборов учета
  • Доля объема энергетических ресурсов, производимых с использованием возобновляемых источников энергии
  • Доля объема производства электрической энергии генерирующими объектами, функционирующими на основе использования возобновляемых источников энергии

Мощность измеряют в джоулях в секунду, или ваттах. Наряду с ваттами используются также лошадиные силы. До изобретения паровой машины мощность двигателей не измеряли, и, соответственно, не было общепринятых единиц мощности. Когда паровую машину начали использовать в шахтах, инженер и изобретатель Джеймс Уатт занялся ее усовершенствованием. Для того чтобы доказать, что его усовершенствования сделали паровую машину более производительной, он сравнил ее мощность с работоспособностью лошадей, так как лошади использовались людьми на протяжении долгих лет, и многие легко могли представить, сколько работы может выполнить лошадь за определенное количество времени. К тому же, не во всех шахтах применялись паровые машины. На тех, где их использовали, Уатт сравнивал мощность старой и новой моделей паровой машины с мощностью одной лошади, то есть, с одной лошадиной силой. Уатт определил эту величину экспериментально, наблюдая за работой тягловых лошадей на мельнице. Согласно его измерениям одна лошадиная сила — 746 ватт. Сейчас считается, что эта цифра преувеличена, и лошадь не может долго работать в таком режиме, но единицу изменять не стали. Мощность можно использовать как показатель производительности, так как при увеличении мощности увеличивается количество выполненной работы за единицу времени. Многие поняли, что удобно иметь стандартизированную единицу мощности, поэтому лошадиная сила стала очень популярна. Ее начали использовать и при измерении мощности других устройств, особенно транспорта. Несмотря на то, что ватты используются почти также долго, как лошадиные силы, в автомобильной промышленности чаще применяются лошадиные силы, и многим покупателям понятнее, когда именно в этих единицах указана мощность автомобильного двигателя.

Лампа накаливания мощностью 60 ватт

Определение расходаинфильтрующегося воздуха в существующих жилых зданиях строительства до 2000 г.

Жилые здания строительства до
2000 г характеризуются низкой герметичностью оконных проемов, вследствие чего
расход инфильтрующегося воздуха через эти проемы под действием гравитационного
и ветрового напоров зачастую превышает требуемый для вентиляции. Расход
инфильтрующегося воздуха Ginf, кг/ч, в здании
находится по следующей эмпирической зависимости*:

(4.1)

где G.inf.кв — средняя (по
зданию) величина инфильтрации через окна одной квартиры, кг/ч;

Ккв — количество квартир в здании;

— то же, что в
формуле ();

Ginf.ЛЛУ — величина
инфильтрации при tн = -25 °С через
окна и наружные двери помещений лестнично-лифтового узла, приходящаяся на один
этаж, кг/ч. Для жилых зданий, не имеющих лестничных клеток, отделенных
наружными переходами, Ginf.ЛЛУ принимается в
зависимости от площади окон лестнично-лифтовых узлов FЛЛУ, м2, одного этажа (табл. 4.1). Для жилых зданий с
лестничными клетками, отделенными наружными переходами, Ginf.ЛЛУ принимается в
зависимости от этажности здания Nи характеристики сопротивления
дверей наружных переходов Sдвв диапазонах (0,5-2)ּ10-3 Паּч/кг2
(первая величина для неуплотненных закрытых дверей) (табл. 4.2);

* Этот метод определения инфильтрации воздуха в
жилом здании разработан в МНИИТЭП на основе обобщения серии расчетов воздушного
режима на ЭВМ. Он позволяет определить суммарный расход инфильтрующегося
воздуха во всех квартирах здания с учетом разгерметизации окон верхних этажей
для обеспечения санитарной нормы притока в жилые комнаты и с учетом особенности
инфильтрации воздуха через окна и двери в лестнично-лифтовом узле. Метод
опубликован в журнале «Водоснабжение и санитарная техника», 1987, № 9.


Похожие записи:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *